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Abstract: A symmetric multi-core processor is a chip which integrates a number of processors (cores). 
Each core has its own local memory which is accessible by its core only. The cores share and equally 
access a shared memory. The multi-core processors suffer from the delay caused by the contention among 
the cores to access the shared memory. Also, a bigger delay results from the cache coherence operations, 
where each core must update other cores on any change it makes on a shared variable. This is 
accomplished by broadcasting the change to the rest of the cores.  In 2014 the authors completed, tested 
and verified an organization of a multi-port content addressable memory (MPCAM) which, if used as a 
shared memory, it allows all the cores of the processor to access it simultaneously without the need for 
queuing and arbitration. The access time is the same as that of accessing the core’s private memory. The 
organization of this memory guarantees the cache coherence automatically and eliminates the need for 
cache coherence operations. This is an unprecedented result. This architecture represents a whole solution 
to the long standing problem of latency due to contention and cache coherence operations in multi-core 
(formerly multiprocessor) system. 
 
Key-words: Multi-core, shared cache, contention, cache coherence, dual port CAM, multi-port content 
addressable memory (MPCAM). 
 
1 Introduction 
In symmetric multi-core processor systems, the 
processor includes a number of cores and a 
shared memory. Each core includes a pipelined 
processor and two levels of private cache, cache 
level 1 (L1) and cache level 2 (L2). L1 includes 
instruction cache and data cache whereas cache 
L2 is a data cache. The shared memory is 
considered as a third level data cache (L3). Each 
core can exclusively access its private L1, and 
L2 caches, whereas it shares cache L3 with other 
cores of the system. All cores access the shared 
memory through an interconnection network. 
The memory management unit (MMU) of the 
system loads the data caches with the primary 
data.  
 
 

Accessing the shared cache causes contention 
among the cores which means increasing the 
shared cache access time and hence slowing the 
core operations. The contention and the resulting 
extra latency are there even if the best network 
(NXN crossbar switch) is used between the 
cores and the modules of the shared cache [1], 
[2], and [3]. 
 
What add to the latency are the cache coherence 
protocols which are used to guarantee that the 
core is accessing the right version of data. Also 
when the core updates a shared variable, it has to 
broadcast the new version of the variable to all 
other cores. Only one core can broadcast its 
updated variable at a time. This results in 
queuing and long latencies [4], [5]. 
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Figure 1: The AMD multi-core architecture (a) and 
the Intel multi-core architecture (b) [6] 

To dilute this problem, modern multi-core 
processor systems employ a fast serial point to 
point link among the processors and chipsets of 
the system. Examples are the hyper transport link 
(HT) of the AMD Shanghai and the Quick path 
(QP) of Intel Nehalem depicted in figure 1 [6] 
[7].  
 
In the above examples, the AMD processor 
includes 64 KB L1 cache/core, 512KB cache L2 
cache/core, and shared  6MB cache L3 whereas 
Intel processor includes 32 KB L1 cache/core, 
256 KB L2 cache/core, and shared 8 MB L3 
cache. Cache L2 looks redundant. Rather than 
writing to L2 we can write to L1 where we can 
get faster access. In fact, we can compromise the 
size of L1 and L2 so that we can have a new L1 
so that L1 < “newL1”<( L1+L2) in size with 
“newL1” = L1 in access time. The modules of L3 
can be redesigned and reorganized in the crossbar 
so that we can get an access time equal to that of 
L1. The new L3 can be considered as a shared L2 
cache. The design presented in this paper 
replaces the L3 shared cache with what is called 
Multiport Content Addressable Memory 
(MPCAM). The MPCAM is a very fast fully 
associative memory. It allows simultaneous 

access for read and write operations for all cores 
of the system. No queuing and no arbitration are 
needed. It also automatically guarantees the 
cache coherence for all variables without the 
need for cache coherence protocol.  
 

 
2 The MPCAM-based Architecture 
The multi-core organization presented in this 
paper includes only two levels of cache.  L1 is 
the private (local) cache and L2 is the shared 
cache. Figure 2 depicts this architecture. 

 
Figure 2: The proposed Multi-core processor 

architecture 
Cache L1 includes 32 KB/core instruction cache 
and 32 KB/core data cache. Cache L2 can range 
from 2 MB to 6 MB of data cache without 
exceeding the allowed silicone limits. It is also 
equally and simultaneously accessible by all 
cores of the system. In the following paragraphs, 
we are going to show the architecture of the 
MPCAM and explain how it works. 
 
The MPCAM is built of an array of dual port 
CAMs (DPCAMs) embedded on the cross points 
of a crossbar network. The dual port CAM 
(DPCAM) is a content addressable memory with 
two specialized ports; through the first, we write 
the data and the tag to the first available memory 
line, and through the second we apply the tag to 
all memory lines simultaneously to search for 
and retrieve the data if found. Simultaneous 
write and read operation are allowed unless the 
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same line is addressed. In this case, the priority 
is given to the writing port [8]. This is different 
from the dual port CAM presented in [9]. Figure 
3 depicts the MPCAM organization. 

 
Figure 3: A 4X4 MPCAM organization 

In this organization, all port-1s of the embedded 
DPCAMs are connected to the horizontal buses 
(input buses) of the crossbar, and all port-2s are 
connected to the vertical busses (output buses) 
of the crossbar. With reference to figure 2 and 3, 
if this MPCAM is implemented as a shared 
cache, the store back (SB) units of the pipeline 
are connected to the horizontal busses of the 
crossbar, and the operand fetch (OF) units are 
connected to the vertical busses. All the 
processor cores can write (broadcast) their 
updated shared variables to all the DPCAM 
modules in their row simultaneously. The tag 
accompanying the data includes an address and 
the version number of the variable. The write 
enable pointer of each DPCAM points to the 
least recently written to the line of the memory. 
If the DPCAM has, say 2 K lines, the current 
line won’t be written to again until 2 K write 
operations have elapsed. 
The operand fetch unit of each core can search 
for the required data by applying the tag to all 
lines of all modules in its column. Because the 
data is broadcast to all modules in the row, a 
copy of it exists in each column. So, all the 
cores can search for the same or different data 
in their columns simultaneously. One can see 
that there is no contention among the cores in 
the write or read operations to the shared cache. 
Also, as all versions of the variable exist in the 
shared cache, there is no need for executing 

cache coherence protocols or processor to 
processor communication to broadcast the latest 
version of the variable. For the primary shared 
data, we can add a row of DPCAMs to the 
crossbar with its input bus is connected to MMU 
of the system. The MMU loads the primary 
shared data to that row. Alternatively, the MMU 
can distribute the primary data to all rows 
evenly, where the cores can access them through 
the columns simultaneously. 
 
The versions of the shared variable can be near-
reaching (consumed by near coming processes) 
or far-reaching (consumed long after being 
written). The far-reaching has the possibility of 
being overwritten before used. In this case, the 
compiler can produce a near “read and store” 
operation so that the concerned cores read them 
from the shared memory and store them in their 
local memories. Alternatively, we can 
implement two DPCAMs at each cross point of 
the crossbar as shown in figure 4, one for the 
near-reaching variables and the other for the far-
reaching ones. The modules of the far-reaching 
variables are going to be smaller than those of 
the near-reaching ones because they are less 
frequently used.  

 
Figure 4: The near-reaching and far-reaching 

DPCAM implementation 
 
 

3 Implementation and Verification 
Using Quartuss II design and simulation 
package from Altera [10], the authors have 
designed, simulated, and verified a 3X3 
MPCAM as targeted to Stratix-3 Field 
programmable gates array (FPGA) from Altera 
[11], [12].  
We could not design a larger MPCAM because 
of the “number of pin limitation”. However, it is 
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possible to design much larger MPCAM if we 
design it as integrated with a multi-core system 
where we don’t need any external pins. The 
access time will be the same because regardless 
of the number of DPCAM in the row and the 
column, they will be accessed in parallel 
simultaneously. 
 
3.1 Functional Verification 
Figure 5 shows a sample of 3X3 MPCAM 
operations. Note that in interval 1 (0 to 10 ns), 
cores 1, 2 and 3 are writing (broadcasting) data 
and tags to the modules in their rows. 
Immediately after write (WR) signal (form 151) 
goes low, the presented data in forms (1, 34, 
and67) appear on the output of the flip/flops of 
the written to locations (forms 152, 185, and 
218), which means that the data has been stored 
in the targeted memory locations. In the second 
interval (20 to 30 ns), all the cores present the 

tags of the data written by core-2 (forms 
252,269, and 286) with a read (RD) signal (form 
251) to read this data. Immediately after the RD 
signal goes low, the data appears on the column 
buses of the three cores (forms 303, 336 and 
369), i.e., the three cores read the same data 
simultaneously. Interval 3 shows core 1 and core 
2 reading the same data simultaneously, while 
core 3 is writing (broadcasting data). 
 
3.2 Timing Verification 
Figure 6 shows the timing of the read and write 
operations of the MPCAM as targeted to Stratix-
3 FPGA from Altera. Figure 6 shows that in the 
interval (60-30ns), core 1 presents the data, the 
tag, and a WR signal (form151) to the modules 
in it row. Three nanoseconds after the WR signal 
goes low (at 87 ns point), the data appears on the 
output of targeted modules (at 84 ns point) the 
scale reads from right to left.   

 
Figure 5:a sample 3X3 MPCAM operation  

 
Figure 6: The timing of the read and write operations of the MPCAM as targeted to 

Stratix-3 FPGA from Altera. 
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To prove that the data has been written to all 
modules, we made all the cores access the data 
in their columns by presenting the same tag 
(forms 251, 268, and285) and a RD signal (form 
302). After 4.5 ns the RD signal goes low, the 
same data appears on three different columns 
and read by three different cores, 
simultaneously. 
From the timing diagram, we can see that the 
write and read operations to the shared cache 
wouldn’t take more than 5 to 6 ns as compared 
to 35-40 clock cycles (70-80 ns at 500 MHz) 
average shared cache access time in Nehalem 
processor [13]. 
 
 
4 Simulating The MPCAM-based 
Multi-core Architecture 
In this section, we are going to simulate the 
performance of the multi-core architecture 
which includes the MPCAM as a shared 
memory. The simulation package Valgrind is 
used as a simulation tool [14], [15]. We found 
that the Valgrind was used to simulate a 
modified version of an AMD architecture which 
has a private cache L1 and a shared L2 cache. 
The cores access L2 through a crossbar switch 
network, where L2 includes a number of 
modules equal to the number of cores in the 
system. In our proposed architecture, the same 
size of private L1 cache and an NXN MPCAM 
as an L2 shared cash were used. N is the number 
of cores in the system. 
 
The simulation process was run for a number of 
cores ranging from 1 to 8 cores for the AMD 
and our architecture. The Valgrind provides 
three simulation functions; the “date” and ‘df” 
functions, the performance “PP” function, and 
the dependency function. The first functions 
“date” and “df” return the date and the amount 
of space used on all mounted volumes. The 
performance “PP” and the dependency programs 
return the execution time and the number of 
cache misses during the program execution. The 
execution time is the elapsed CPU real time 
between invocation and the termination of the 
program. 
 

The “date” and the “df” functions are run to 
prove that the simulation is running correctly. 
They were run a number of times for a single 
core for both architectures. They returned the 
same number of cache misses, a thing which 
proved that the simulation process for proposed 
architecture was going correctly. 
 
4.1 The Execution Time 
The multithreading performance program “PP” 
was run for both architectures to measure the 
execution time of two parallel loops and to count 
the cache misses for 1, 2, 3, 4, and 8 cores 
respectively. Table 1 shows the results of the 
execution time. 
 
Table 1:The execution time of the two architecture 

Number 
of core 

AMD multi-core 
execution time  
in seconds 

The MPCAM 
based multi-core 
execution  time in 
seconds 

one 16.2 16.2 
two 10.1 9.8 

three 8.43 6.8 
four 7.16 6.1 
eight 4.98 3.13 

 
The results shows that the MPCAM based 
architecture has a better performance than the 
crossbar based AMD architecture. 
 
4.2 Cache L2 (Shared Variable) Misses 
The “PP” program was run to find the shared 
variable misses in for the AMD and the 
MPCAM based architectures. The results are 
shown in table 2 and figure 7. The miss ratios in 
the shared cache of MPCAM architecture are 
negligible as compared to those of the AMD 
shared cache architecture. As there is no 
contention problem in the MPCAM based 
architecture, a cache miss in the MPCAM based 
architecture implies that the consuming core has 
presented its read request to the shared cache 
before the variable is written to the shared cache. 
The onus here is on the scheduling policy to 
reduce the cache missed through observing 
relaxed dependency timing between the 
production and the consumption of the shared 
variable. We used another dependency 
multithreaded benchmark program to compare 
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the execution time between our model and AMD 
model when the threads of cores are dependent 
on each other, so we used a  benchmark program 
that multiplies two matrices and calculates the 
determinant for the result matrix. Figure 8 shows 
the results of execution time when we run this 
program in the two simulators. 
Table 2: The shared caches misses and  miss ratios 
for the AMD and the MPCAM based architectures. 
Num. 
of 
cores 

 

AMD architecture MPCAM based 
architecture 

Number 
of misses 

Miss 
ratio 

Number 
of misses 

Miss ratio 

2 1,006,004     1.6% 1800 0.00228% 
3 1,257,560 2.0% 1665 0.00211% 
4 1,506,206 2.1% 2,298   0.00316% 
8 1800,000 2.4% 3100 0.00413% 

 
Figure 7: The shared cache miss ratios for the AMD 

and the MPCAM based architectures 
 
4.3 Running the Dependency Function  

 
Figure 8: Dependency Program Execution Time 

in Multi-core 

 
5 Conclusion and Discussion 
In this paper, we presented an unprecedented 
shared memory organization. By providing a 
numbers of input and output ports equal to 
number of the processor cores, it totally 
eliminates the contention among the cores to 
access the shared memory. There is no network 

contention and there is no memory interference. 
As each core of the system writes (broadcasts) 
the variable to all DPCAM modules in its row, a 
copy of the variable will be available in each 
column of the MPCAM, where it can be 
searched for and read by each core 
independently and simultaneously. The DPCAM 
modules of the MPCAM work as a scratch book 
where the core can write all the version of the 
shared data without the risk of being overwritten 
until the subsequent (K-1) memory lines of the 
module are written to. K is the number of 
memory lines in the module. So, as all the 
versions of each variable is available, each has 
its unique tag, the core can access the version it 
needs at any time and in any order, as far as the 
version is available. A 32-bit tag provides a 
unique value for four Giga versions of variables.  
Therefore, the need for cache coherence is 
eliminated a thing which saves the non-compute 
time spent in executing the cache coherence 
protocols. 
 
As the MPCAM is used as a big scratch pad 
with a very short access time, there would be no 
need for the global register. In this organization 
the (OF) and the (SB) of the core pipeline can be 
used to access the data in the local and the 
shared cache. The instruction fetch (IF) unit 
accesses the local instruction cache to fetch the 
instructions. The memory write (MW) and the 
memory read (MR) units can be dedicated to 
access the cache level L3 and the main memory 
outside of the processor. By this, we make sure 
that there is no competition among the pipeline 
units to access any part of the system. 
As all tags of the DPCAM modules in the 
column of the MPCAM are compared with the 
applied tag simultaneously and as each line of 
the memory has its own comparator, the 
memory access time will be the same regardless 
of the module size and the number of modules in 
the rows and the columns of the MPCAM. This 
means that regardless of the N value, the access 
time of an (NXN) MPCAM, where N is the 
number of MPCAM in each row or column, will 
be the same as far as the semiconductor 
technology can accommodate it. 
 
The organization presented in this paper proved 
to be expandable to many-core processor system 
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with a shared cache access time equivalent to 
twice the local cache access time. This 
organization will be presented in our future 
work. 
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