

“The MPCAM Based Multi-core Processor

Architecture: A Contention Free Architecture”

ALLAM ABUMWAIS, Department of Computer Engineering, Near East University,
LEFKOSA, CYPRUS

E-mail: Allam.Abumwais@aauj.edu

ABDULKARIM AYYAD, Department of Computer Engineering, Al-Quds University, EAST
JERUSALEM, PALESTINE

E-mail: akayyad@eng.alquds.edu

Abstract: A symmetric multi-core processor is a chip which integrates a number of processors (cores).
Each core has its own local memory which is accessible by its core only. The cores share and equally
access a shared memory. The multi-core processors suffer from the delay caused by the contention among
the cores to access the shared memory. Also, a bigger delay results from the cache coherence operations,
where each core must update other cores on any change it makes on a shared variable. This is
accomplished by broadcasting the change to the rest of the cores. In 2014 the authors completed, tested
and verified an organization of a multi-port content addressable memory (MPCAM) which, if used as a
shared memory, it allows all the cores of the processor to access it simultaneously without the need for
queuing and arbitration. The access time is the same as that of accessing the core’s private memory. The
organization of this memory guarantees the cache coherence automatically and eliminates the need for
cache coherence operations. This is an unprecedented result. This architecture represents a whole solution
to the long standing problem of latency due to contention and cache coherence operations in multi-core
(formerly multiprocessor) system.

Key-words: Multi-core, shared cache, contention, cache coherence, dual port CAM, multi-port content
addressable memory (MPCAM).

1 Introduction
In symmetric multi-core processor systems, the
processor includes a number of cores and a
shared memory. Each core includes a pipelined
processor and two levels of private cache, cache
level 1 (L1) and cache level 2 (L2). L1 includes
instruction cache and data cache whereas cache
L2 is a data cache. The shared memory is
considered as a third level data cache (L3). Each
core can exclusively access its private L1, and
L2 caches, whereas it shares cache L3 with other
cores of the system. All cores access the shared
memory through an interconnection network.
The memory management unit (MMU) of the
system loads the data caches with the primary
data.

Accessing the shared cache causes contention
among the cores which means increasing the
shared cache access time and hence slowing the
core operations. The contention and the resulting
extra latency are there even if the best network
(NXN crossbar switch) is used between the
cores and the modules of the shared cache [1],
[2], and [3].

What add to the latency are the cache coherence
protocols which are used to guarantee that the
core is accessing the right version of data. Also
when the core updates a shared variable, it has to
broadcast the new version of the variable to all
other cores. Only one core can broadcast its
updated variable at a time. This results in
queuing and long latencies [4], [5].

WSEAS TRANSACTIONS on ELECTRONICS Allam Abumwais, Abdulkarim Ayyad

E-ISSN: 2415-1513 105 Volume 9, 2018

mailto:Allam.Abumwais@aauj.edu
mailto:akayyad@eng.alquds.edu

Figure 1: The AMD multi-core architecture (a) and
the Intel multi-core architecture (b) [6]

To dilute this problem, modern multi-core
processor systems employ a fast serial point to
point link among the processors and chipsets of
the system. Examples are the hyper transport link
(HT) of the AMD Shanghai and the Quick path
(QP) of Intel Nehalem depicted in figure 1 [6]
[7].

In the above examples, the AMD processor
includes 64 KB L1 cache/core, 512KB cache L2
cache/core, and shared 6MB cache L3 whereas
Intel processor includes 32 KB L1 cache/core,
256 KB L2 cache/core, and shared 8 MB L3
cache. Cache L2 looks redundant. Rather than
writing to L2 we can write to L1 where we can
get faster access. In fact, we can compromise the
size of L1 and L2 so that we can have a new L1
so that L1 < “newL1”<(L1+L2) in size with
“newL1” = L1 in access time. The modules of L3
can be redesigned and reorganized in the crossbar
so that we can get an access time equal to that of
L1. The new L3 can be considered as a shared L2
cache. The design presented in this paper
replaces the L3 shared cache with what is called
Multiport Content Addressable Memory
(MPCAM). The MPCAM is a very fast fully
associative memory. It allows simultaneous

access for read and write operations for all cores
of the system. No queuing and no arbitration are
needed. It also automatically guarantees the
cache coherence for all variables without the
need for cache coherence protocol.

2 The MPCAM-based Architecture
The multi-core organization presented in this
paper includes only two levels of cache. L1 is
the private (local) cache and L2 is the shared
cache. Figure 2 depicts this architecture.

Figure 2: The proposed Multi-core processor

architecture
Cache L1 includes 32 KB/core instruction cache
and 32 KB/core data cache. Cache L2 can range
from 2 MB to 6 MB of data cache without
exceeding the allowed silicone limits. It is also
equally and simultaneously accessible by all
cores of the system. In the following paragraphs,
we are going to show the architecture of the
MPCAM and explain how it works.

The MPCAM is built of an array of dual port
CAMs (DPCAMs) embedded on the cross points
of a crossbar network. The dual port CAM
(DPCAM) is a content addressable memory with
two specialized ports; through the first, we write
the data and the tag to the first available memory
line, and through the second we apply the tag to
all memory lines simultaneously to search for
and retrieve the data if found. Simultaneous
write and read operation are allowed unless the

WSEAS TRANSACTIONS on ELECTRONICS Allam Abumwais, Abdulkarim Ayyad

E-ISSN: 2415-1513 106 Volume 9, 2018

same line is addressed. In this case, the priority
is given to the writing port [8]. This is different
from the dual port CAM presented in [9]. Figure
3 depicts the MPCAM organization.

Figure 3: A 4X4 MPCAM organization

In this organization, all port-1s of the embedded
DPCAMs are connected to the horizontal buses
(input buses) of the crossbar, and all port-2s are
connected to the vertical busses (output buses)
of the crossbar. With reference to figure 2 and 3,
if this MPCAM is implemented as a shared
cache, the store back (SB) units of the pipeline
are connected to the horizontal busses of the
crossbar, and the operand fetch (OF) units are
connected to the vertical busses. All the
processor cores can write (broadcast) their
updated shared variables to all the DPCAM
modules in their row simultaneously. The tag
accompanying the data includes an address and
the version number of the variable. The write
enable pointer of each DPCAM points to the
least recently written to the line of the memory.
If the DPCAM has, say 2 K lines, the current
line won’t be written to again until 2 K write
operations have elapsed.
The operand fetch unit of each core can search
for the required data by applying the tag to all
lines of all modules in its column. Because the
data is broadcast to all modules in the row, a
copy of it exists in each column. So, all the
cores can search for the same or different data
in their columns simultaneously. One can see
that there is no contention among the cores in
the write or read operations to the shared cache.
Also, as all versions of the variable exist in the
shared cache, there is no need for executing

cache coherence protocols or processor to
processor communication to broadcast the latest
version of the variable. For the primary shared
data, we can add a row of DPCAMs to the
crossbar with its input bus is connected to MMU
of the system. The MMU loads the primary
shared data to that row. Alternatively, the MMU
can distribute the primary data to all rows
evenly, where the cores can access them through
the columns simultaneously.

The versions of the shared variable can be near-
reaching (consumed by near coming processes)
or far-reaching (consumed long after being
written). The far-reaching has the possibility of
being overwritten before used. In this case, the
compiler can produce a near “read and store”
operation so that the concerned cores read them
from the shared memory and store them in their
local memories. Alternatively, we can
implement two DPCAMs at each cross point of
the crossbar as shown in figure 4, one for the
near-reaching variables and the other for the far-
reaching ones. The modules of the far-reaching
variables are going to be smaller than those of
the near-reaching ones because they are less
frequently used.

Figure 4: The near-reaching and far-reaching

DPCAM implementation

3 Implementation and Verification
Using Quartuss II design and simulation
package from Altera [10], the authors have
designed, simulated, and verified a 3X3
MPCAM as targeted to Stratix-3 Field
programmable gates array (FPGA) from Altera
[11], [12].
We could not design a larger MPCAM because
of the “number of pin limitation”. However, it is

WSEAS TRANSACTIONS on ELECTRONICS Allam Abumwais, Abdulkarim Ayyad

E-ISSN: 2415-1513 107 Volume 9, 2018

possible to design much larger MPCAM if we
design it as integrated with a multi-core system
where we don’t need any external pins. The
access time will be the same because regardless
of the number of DPCAM in the row and the
column, they will be accessed in parallel
simultaneously.

3.1 Functional Verification
Figure 5 shows a sample of 3X3 MPCAM
operations. Note that in interval 1 (0 to 10 ns),
cores 1, 2 and 3 are writing (broadcasting) data
and tags to the modules in their rows.
Immediately after write (WR) signal (form 151)
goes low, the presented data in forms (1, 34,
and67) appear on the output of the flip/flops of
the written to locations (forms 152, 185, and
218), which means that the data has been stored
in the targeted memory locations. In the second
interval (20 to 30 ns), all the cores present the

tags of the data written by core-2 (forms
252,269, and 286) with a read (RD) signal (form
251) to read this data. Immediately after the RD
signal goes low, the data appears on the column
buses of the three cores (forms 303, 336 and
369), i.e., the three cores read the same data
simultaneously. Interval 3 shows core 1 and core
2 reading the same data simultaneously, while
core 3 is writing (broadcasting data).

3.2 Timing Verification
Figure 6 shows the timing of the read and write
operations of the MPCAM as targeted to Stratix-
3 FPGA from Altera. Figure 6 shows that in the
interval (60-30ns), core 1 presents the data, the
tag, and a WR signal (form151) to the modules
in it row. Three nanoseconds after the WR signal
goes low (at 87 ns point), the data appears on the
output of targeted modules (at 84 ns point) the
scale reads from right to left.

Figure 5:a sample 3X3 MPCAM operation

Figure 6: The timing of the read and write operations of the MPCAM as targeted to

Stratix-3 FPGA from Altera.

WSEAS TRANSACTIONS on ELECTRONICS Allam Abumwais, Abdulkarim Ayyad

E-ISSN: 2415-1513 108 Volume 9, 2018

To prove that the data has been written to all
modules, we made all the cores access the data
in their columns by presenting the same tag
(forms 251, 268, and285) and a RD signal (form
302). After 4.5 ns the RD signal goes low, the
same data appears on three different columns
and read by three different cores,
simultaneously.
From the timing diagram, we can see that the
write and read operations to the shared cache
wouldn’t take more than 5 to 6 ns as compared
to 35-40 clock cycles (70-80 ns at 500 MHz)
average shared cache access time in Nehalem
processor [13].

4 Simulating The MPCAM-based
Multi-core Architecture
In this section, we are going to simulate the
performance of the multi-core architecture
which includes the MPCAM as a shared
memory. The simulation package Valgrind is
used as a simulation tool [14], [15]. We found
that the Valgrind was used to simulate a
modified version of an AMD architecture which
has a private cache L1 and a shared L2 cache.
The cores access L2 through a crossbar switch
network, where L2 includes a number of
modules equal to the number of cores in the
system. In our proposed architecture, the same
size of private L1 cache and an NXN MPCAM
as an L2 shared cash were used. N is the number
of cores in the system.

The simulation process was run for a number of
cores ranging from 1 to 8 cores for the AMD
and our architecture. The Valgrind provides
three simulation functions; the “date” and ‘df”
functions, the performance “PP” function, and
the dependency function. The first functions
“date” and “df” return the date and the amount
of space used on all mounted volumes. The
performance “PP” and the dependency programs
return the execution time and the number of
cache misses during the program execution. The
execution time is the elapsed CPU real time
between invocation and the termination of the
program.

The “date” and the “df” functions are run to
prove that the simulation is running correctly.
They were run a number of times for a single
core for both architectures. They returned the
same number of cache misses, a thing which
proved that the simulation process for proposed
architecture was going correctly.

4.1 The Execution Time
The multithreading performance program “PP”
was run for both architectures to measure the
execution time of two parallel loops and to count
the cache misses for 1, 2, 3, 4, and 8 cores
respectively. Table 1 shows the results of the
execution time.

Table 1:The execution time of the two architecture

Number
of core

AMD multi-core
execution time
in seconds

The MPCAM
based multi-core
execution time in
seconds

one 16.2 16.2
two 10.1 9.8

three 8.43 6.8
four 7.16 6.1
eight 4.98 3.13

The results shows that the MPCAM based
architecture has a better performance than the
crossbar based AMD architecture.

4.2 Cache L2 (Shared Variable) Misses
The “PP” program was run to find the shared
variable misses in for the AMD and the
MPCAM based architectures. The results are
shown in table 2 and figure 7. The miss ratios in
the shared cache of MPCAM architecture are
negligible as compared to those of the AMD
shared cache architecture. As there is no
contention problem in the MPCAM based
architecture, a cache miss in the MPCAM based
architecture implies that the consuming core has
presented its read request to the shared cache
before the variable is written to the shared cache.
The onus here is on the scheduling policy to
reduce the cache missed through observing
relaxed dependency timing between the
production and the consumption of the shared
variable. We used another dependency
multithreaded benchmark program to compare

WSEAS TRANSACTIONS on ELECTRONICS Allam Abumwais, Abdulkarim Ayyad

E-ISSN: 2415-1513 109 Volume 9, 2018

the execution time between our model and AMD
model when the threads of cores are dependent
on each other, so we used a benchmark program
that multiplies two matrices and calculates the
determinant for the result matrix. Figure 8 shows
the results of execution time when we run this
program in the two simulators.
Table 2: The shared caches misses and miss ratios
for the AMD and the MPCAM based architectures.
Num.
of
cores

AMD architecture MPCAM based
architecture

Number
of misses

Miss
ratio

Number
of misses

Miss ratio

2 1,006,004 1.6% 1800 0.00228%
3 1,257,560 2.0% 1665 0.00211%
4 1,506,206 2.1% 2,298 0.00316%
8 1800,000 2.4% 3100 0.00413%

Figure 7: The shared cache miss ratios for the AMD

and the MPCAM based architectures

4.3 Running the Dependency Function

Figure 8: Dependency Program Execution Time

in Multi-core

5 Conclusion and Discussion
In this paper, we presented an unprecedented
shared memory organization. By providing a
numbers of input and output ports equal to
number of the processor cores, it totally
eliminates the contention among the cores to
access the shared memory. There is no network

contention and there is no memory interference.
As each core of the system writes (broadcasts)
the variable to all DPCAM modules in its row, a
copy of the variable will be available in each
column of the MPCAM, where it can be
searched for and read by each core
independently and simultaneously. The DPCAM
modules of the MPCAM work as a scratch book
where the core can write all the version of the
shared data without the risk of being overwritten
until the subsequent (K-1) memory lines of the
module are written to. K is the number of
memory lines in the module. So, as all the
versions of each variable is available, each has
its unique tag, the core can access the version it
needs at any time and in any order, as far as the
version is available. A 32-bit tag provides a
unique value for four Giga versions of variables.
Therefore, the need for cache coherence is
eliminated a thing which saves the non-compute
time spent in executing the cache coherence
protocols.

As the MPCAM is used as a big scratch pad
with a very short access time, there would be no
need for the global register. In this organization
the (OF) and the (SB) of the core pipeline can be
used to access the data in the local and the
shared cache. The instruction fetch (IF) unit
accesses the local instruction cache to fetch the
instructions. The memory write (MW) and the
memory read (MR) units can be dedicated to
access the cache level L3 and the main memory
outside of the processor. By this, we make sure
that there is no competition among the pipeline
units to access any part of the system.
As all tags of the DPCAM modules in the
column of the MPCAM are compared with the
applied tag simultaneously and as each line of
the memory has its own comparator, the
memory access time will be the same regardless
of the module size and the number of modules in
the rows and the columns of the MPCAM. This
means that regardless of the N value, the access
time of an (NXN) MPCAM, where N is the
number of MPCAM in each row or column, will
be the same as far as the semiconductor
technology can accommodate it.

The organization presented in this paper proved
to be expandable to many-core processor system

WSEAS TRANSACTIONS on ELECTRONICS Allam Abumwais, Abdulkarim Ayyad

E-ISSN: 2415-1513 110 Volume 9, 2018

with a shared cache access time equivalent to
twice the local cache access time. This
organization will be presented in our future
work.

References

[1] John L. Hennessy and David A. Patterson,

“Computer Architecture A Quantitative
Approach”, Fourth Edition Standford
University, 2007.

[2] A. Ayyad, I. Exman, M. Land, L. Rudolph,
“An Experimental Cross-Bar Switch For
Support Of Collective Communications In
Parallel Processing”, Proceedings of the
Nineteenth Convention of IEEE in Israel,
November 5-6, 1996.

[3] Barry Wilkinson, “Computer Architecture;
Design and Performance”, 2nd edition,
Prentice Hall Europe, 1996.

[4] J. Archibald and J.L. Baer, “Cache
Coherence Protocols: Evaluation Using a
Multiprocessor Simulation Model”, ACM
transaction on Computer System, Vol 4,
No.4, PP 273-298, 1986.

[5] B. Baterman, C. Freeman nad E. Resse, “A
450MHz 512KB second-Level cache with a
3,9GB/s data bandwidth ”, 1998.

[6] Daniel Hackenberg Daniel Molka Wolfgang
E. “Nagel Comparing Cache Architectures
and Coherency Protocols on x86-64
Multicore SMP Systems”, Center for
Information Services and High
Performance Computing (ZIH),
MICRO’09, December 12–16, 2009, New
York, NY, USA.

[7] “An Introduction to the Intel QuickPath
Interconnect”, Intel Corporation, January
30, 2009.

[8] Abdulkarim Ayyad, “The Design of a
Special Purpose Dual Port Content
Addressable Memory”, Computer
Architecture Lab Course Project Report,
Al-Quds University, Palestine, 2011.

[9] Raymong Leong, Gary Green, “Dual-port
content addressable memory”,
Assignees: Cypress Semiconductor
Corporation, Patent number: US6122706,
Application number: 08/172,575, Filing
date: Dec 22, 1993, Issue date: Sep 19,
2000.

[10] The homepage of Altera.
http://www.altera.com/

[11] Altera, “Stratix III Development Kit”,
Document Version: 1.1, San Jose, CA
95134,Agest 2008 (www.altera.com)

[12] Altera ,”Stratix III 3SL150 Development
Board ”, Refernce Manual , San Jose, CA
95134,May 2013.

[13] Michael E. Thomadakis, Ph.D.,“The
Architecture of the Nehalem Processor And
Nehalem-EP SMP Platforms”,
Supercomputing Facility, Research Report
Texas A&M University, March, 17, 2011.
miket@tamu.edu 2014.

[14] Robert Franz and Josef Weidendorfer,
“Development of a Multicore Cache
Simulator for Performance Analysis”,
bachelor thesis, Technical University
Munich , july 2008.

[15] The homepage of Valgrind.
http://www.valgrind.org

WSEAS TRANSACTIONS on ELECTRONICS Allam Abumwais, Abdulkarim Ayyad

E-ISSN: 2415-1513 111 Volume 9, 2018

http://www.altera.com/
http://www.altera.com/
mailto:miket@tamu.edu
http://www.valgrind.org/

